Airway smooth muscle (ASM) extends from the trachea throughout the bronchial tree to the terminal bronchioles. In utero, spontaneous phasic contraction of fetal ASM is critical for normal lung development by regulating intraluminal fluid movement, ASM differentiation, and release of key growth factors. In contrast, phasic contraction appears to be absent in the adult lung, and regulation of tonic contraction and airflow is under neuronal and humoral control. Accumulating evidence suggests that changes in ASM responsiveness contribute to the pathophysiology of lung diseases with lifelong health impacts.Functional assessments of fetal and adult ASM and airways have defined pharmacological responses and signaling pathways that drive airway contraction and relaxation. Studies using precision-cut lung slices, in which contraction of intrapulmonary airways and ASM calcium signaling can be assessed simultaneously in situ, have been particularly informative. These combined approaches have defined the relative importance of calcium entry into ASM and calcium release from intracellular stores as drivers of spontaneous phasic contraction in utero and excitation-contraction coupling.Increased contractility of ASM in asthma contributes to airway hyperresponsiveness. Studies using animal models and human ASM and airways have characterized inflammatory and other mechanisms underlying increased reactivity to contractile agonists and reduced bronchodilator efficacy of β2-adrenoceptor agonists in severe diseases. Novel bronchodilators and the application of bronchial thermoplasty to ablate increased ASM within asthmatic airways have the potential to overcome limitations of current therapies. These approaches may directly limit excessive airway contraction to improve outcomes for difficult-to-control asthma and other chronic lung diseases.
Keywords: Airway smooth muscle; Asthma; Bronchodilator; Calcium; Contraction; Phasic; Tonic.
Bossé Y. Bossé Y. J Endocrinol. 2014 Aug;222(2):R61-73. doi: 10.1530/JOE-14-0220. Epub 2014 Jun 13. J Endocrinol. 2014. PMID: 24928940 Review.
Hirota S, Helli PB, Catalli A, Chew A, Janssen LJ. Hirota S, et al. Can J Physiol Pharmacol. 2005 Aug-Sep;83(8-9):725-32. doi: 10.1139/y05-070. Can J Physiol Pharmacol. 2005. PMID: 16333374 Review.
Jiang H, Abel PW, Toews ML, Deng C, Casale TB, Xie Y, Tu Y. Jiang H, et al. J Pharmacol Exp Ther. 2010 Sep 1;334(3):703-9. doi: 10.1124/jpet.110.168518. Epub 2010 May 25. J Pharmacol Exp Ther. 2010. PMID: 20501633 Free PMC article.
Martin JG, Duguet A, Eidelman DH. Martin JG, et al. Eur Respir J. 2000 Aug;16(2):349-54. doi: 10.1034/j.1399-3003.2000.16b25.x. Eur Respir J. 2000. PMID: 10968513 Review.
Pelaia G, Renda T, Gallelli L, Vatrella A, Busceti MT, Agati S, Caputi M, Cazzola M, Maselli R, Marsico SA. Pelaia G, et al. Respir Med. 2008 Aug;102(8):1173-81. doi: 10.1016/j.rmed.2008.02.020. Epub 2008 Jun 24. Respir Med. 2008. PMID: 18579364 Review.
Montaño LM, Carbajal-García A, Casas-Hernández MF, Arredondo-Zamarripa D, Reyes-García J. Montaño LM, et al. Pharmaceuticals (Basel). 2024 Feb 24;17(3):293. doi: 10.3390/ph17030293. Pharmaceuticals (Basel). 2024. PMID: 38543079 Free PMC article.
Savin IA, Zenkova MA, Sen'kova AV. Savin IA, et al. Int J Mol Sci. 2023 Nov 7;24(22):16042. doi: 10.3390/ijms242216042. Int J Mol Sci. 2023. PMID: 38003234 Free PMC article. Review.
Yang CC, Lee IT, Lin YJ, Wu WB, Hsiao LD, Yang CM. Yang CC, et al. Int J Mol Sci. 2023 Oct 13;24(20):15130. doi: 10.3390/ijms242015130. Int J Mol Sci. 2023. PMID: 37894811 Free PMC article.
Khalfaoui L, Pabelick CM. Khalfaoui L, et al. Expert Opin Ther Targets. 2023 Jan;27(1):19-29. doi: 10.1080/14728222.2023.2177533. Epub 2023 Feb 13. Expert Opin Ther Targets. 2023. PMID: 36744401 Free PMC article.
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Ligresti G, et al. Gene. 2023 Apr 5;859:147142. doi: 10.1016/j.gene.2022.147142. Epub 2023 Jan 2. Gene. 2023. PMID: 36603696 Free PMC article. Review.